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ABSTRACT

This paper mainly deals with the basics of semigroup theory. The foundation of this
thesis is the first chapter of Tero Harju’s lecture notes on semigroup theory, dating
back to 1996. Constructing a number system, working through examples to make
abstract concepts tangable, and proving the ”Cayley type theorem for semigroups” is
this paper’s main goal. All the main definitions which are not part of Harju’s notes
are taken out of Joachim Gräter’s 2018 ”Algebra and Arithmetik” script, whereas the
historical excursion has been inspired by Christopher Holling’s article on the early
developements of semigroup theory.

PREFACE

The term ”semigroup” was first introduced in 1904 to describe a system that extends results of
finite groups to infinite ones.
The definition of those ”semigroups” slighty differs from our understanding nowadays. The
modern, now used definiton of semigroups got more and more common in the early years of the
twentieth century without a real name (for example in the representation-theoretic work of
Frobenius and Schur (1906) where it was first observed that a group’s inverses were unnecessary
for the problem at hand). Although used by many at the time, one cannot really talk about
semigroup theory because if used, they were nothing but byproducts of the work at hand.
The first proper use of semigroup theory can be attributed to Anton Kazimirovich Suschkewitsch
and his work in the early 1920. His usage of (algebraic) semigroup theory before the rest of the
world is what granted us many different results we now take for granted.
Suschkewitschs textbook The Theory of Generalised Groups (1937) and his other work (which
mostly remainded unknown for many many years) together with many papers appearing in and
after the 1930s laid a broad foundation of the theory, peaking in an outburst of papers in 1940 and
1941 wich can be condensed into three different, highly influential papers: Rees (1940), Clifford
(1941) and Dubreil (1941). Rees’ paper contained semigroup theory’s first great structure theorem
(which is appropriately know nowadays as Rees’ Theorem), while Cliffords paper with his structure
theorem, which has no analogues in either group or ring theory, can be marked as the beginning of
an independent theory of semigroups.
Starting with the 1950s it was apparent that semigroup theory could stand on its own. The theory
had been advanced further and further, especially in the USSR. But due to a lack of
communication at that time between countries, it so happened that a lot of results were derived
simultaneously in different parts of the world resulting in a lot of duplicates.
One problem that came with quite similar derivations, was that everyone was using different
notation, definitions and terminology. To tackle this specific problem, Clifford and Preston’s classic
book The Algebraic Theory of Semigroups has been published starting 1961, which is still
considered the norm up to this date when it comes to notation and the sorts. This standardisation
was one of the reasons why semigroup theory became a worldwide established and still researched
branch of mathematics.
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1 The Set of Natural Numbers

Before we can begin to go into detail about semigroup theory, we have to make some preparations
beforehand. We start off by introducing the so-called Peano Axioms, which allow us to construct
the number system that we usually call the set of natural numbers or positive integers.

Definition. The Peano Axioms:

Let there exists a non-empty set N such that

P1: 0 ∈ N.
P2: For all n ∈ N there exists a unique succ(n) ∈ N, called the successor of n.
P3: For all n ∈ N holds succ(n) 6= 0.
P4: If m,n ∈ N and succ(m) = succ(n), then m = n.
P5: For any S ⊆ N satisfying

(i) 0 ∈ S
(ii) s ∈ S ⇒ succ(s) ∈ S
,we have S = N.

This newly constructed set will allow us to perform basic arithmetic using two operations that we
call addition and multiplication on N.

Definition. The usual addition:

Let for all n,m ∈ N, + : N× N→ N, (n,m) 7→ n+m be given by:

(i) n+ 0 = n
(ii) n + succ(m) = succ(n+m) ,whenever n+m is defined.

Definition. The usual multiplication:

Let for all n,m ∈ N, · : N× N→ N, (n,m) 7→ n ·m be given by:

(iii) n · 0 = 0
(iv) n · succ(m) = n ·m + n ,whenever n ·m is defined.

Now that we have established those operations, it is time to introduce the main tool for proving
statements regarding the natural numbers:

Theorem. The principle of mathematical induction:

Let P(n) be a certain proposition. P(n) is said to be true for all n ∈ N under the condition, that
P(k = 0) (the base step) is true and, for every k ∈ N, P(k) (the induction hypothesis) is true
implies P(succ(k)) is true.

What this theorem basically states, is, that we assume a certain statement about n ∈ N to be true,
and show, that this hypothesis ensures our statement to still hold for the successor of n. Let us now
establish a few rules about the natural numbers that we are going to use at a later point of time.
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Proposition. P1: We have n + succ(0) = succ(n) for all n ∈ N

Proof. Let n ∈ N be any arbitrary natural number, then:

n + succ(0)
(ii)
= succ(n+ 0)
(i)
= succ(n)

Thus the proposition P1 has been successfully established.

We usually denote succ(0) as the element 1 ∈ N.

�

Proposition. P2: For all n ∈ N we have n · 0 = 0 = 0 · n .

Proof. We are going to make use of the principle of mathematical induction. Let P(n) :
n · 0 = 0 = 0 · n for all n ∈ N. Consider the base step P(0):

0 · 0 (iii)
= 0

(iii)
= 0 · 0

which is true. Let us now assume that for some k ∈ N P(k) is true. Let us now confirm that this
induction hypothesis ensures P(succ(k)) being true.

⇒ 0 · succ(k)
(iv)
= 0 · k + 0

P(k)
= k · 0 + 0

(iii)
= 0 + 0

(i)
= 0

(iii)
= succ(k) · 0

�

Proposition. P3: We have n · 1 = n · succ(0) = n = succ(0) · n = 1 · n for all n ∈ N.

Proof. We proceed by induction. Let P(n) : n · succ(0) = n = succ(0) · n for all n ∈ N. The
base step P(0):

0 · succ(0)
P2= succ(0) · 0 (iii)

= 0

is clearly true, following from our multiplication’s definition and the fact that 0 commutes. Now let
us assume that P(k) is true for some k ∈ N. Then it follows for P(succ(k)) :

succ(k) · succ(0)
(iv)
= succ(k) · 0 + succ(k)

(iii)
= succ(k)

and

succ(0) · succ(k) = succ(0) · k + succ(0)
P(k)
= k + succ(0) = succ(k)

�

6



2 Basic Definitions and Examples

Now that we have established the first few rules about N using the principle of mathematical
induction, we can finally start with introducing the most basic algebraic pair, the magma.

2.1 Definition. Magma:

Let M be a non-empty set. An algebraic structure (M ,◦), ◦ : M×M →M is called a magma
or groupoid if it is closed under the operation ◦ , i.e.

for all a, b ∈M : a ◦ b ∈M .

Such operations are called binary with the property that they map all ordered pairs
(a, b) ∈M ×M to an element ◦(a, b) ∈M . In a more mathematical notation, we have
(a, b) 7→ ◦(a, b). The mapping ◦ is usually called a product of (M,◦) and can also be denoted as
a ◦ b or simply ab instead of ◦(a, b).

Same goes for our magma. We are sometimes going to denote an algebraic pair as just M instead
of (M, ◦) if it is clear from the context what we actually mean. Note, that whenever I refer to
something in this paper as just a pair or an algebraic structure, we are going to assume this pair
to be at least a magma and that the operation acting on the set is binary.

Example. (1) The pair (N, +), + : N× N→ N forms a magma under addition.

Proof. We proceed by induction. Let n ∈ N be a fixed but arbitrary natural number and let

P(m): n+m ∈ N for all m ∈ N .

As the base step we would like to consider P(0). This is indeed true, since n+ 0 ∈ N by the
addition’s definition. Now we want to suppose that for some k ∈ N P(k) is true. Thus it follows
that P(succ(k)): n + succ(k) ∈ N is true, since n + succ(k) = succ(n+ k) by the second part of
our addition’s definition. It immediately follows by P2 that succ(n+ k) ∈ N, whenever n+ k ∈ N.
By the principle of mathematical induction we can conclude that the proposition P(m) is true for
all m ∈ N and thus N is closed under addition. By definition (N, +) is a magma.

�

2.2 Definition. Submagma:

For every algebraic structure we can define a substructure. Let (M, ◦) be a Magma and MS ⊆M a
non-empty subset of M . A pair (MS , ◦), ◦ : MS ×MS →MS is called a submagma or
subgroupoid of M if it is closed under the operation ◦, which we then denote as MS ≤M .

Example. (2) An example of such a submagma is the fact, that every magma is a submagma of
itself. Let (M, ◦) be a magma, meaning that M is closed under the operation ◦ : M×M →M .
Since every set is a subset of itself, meaning M ⊆M , it follows that (M, ◦) ⊆ (M, ◦) is indeed a
submagma of itself.

�
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After laying the foundations of abstract algebra, we can move on to introducing the semigroup
theory’s main actor, namely the semigroup itself.

2.3 Definition. Semigroups:

Let us now consider a magma (S, ◦) where our operation ◦ : S × S → S is associative, meaning
that the order of carrying out the binary operation is not relevant. In mathematical notation we
can define associativity as:

∀a, b, c ∈ S: a ◦ (b ◦ c) = (a ◦ b) ◦ c .

If this property indeed holds for said (S, ◦), then we usually call this pair a semigroup. Also, just
because the order of carrying out the operation is irrelevant does not imply that we can change the
order of our elements on which the operation is carried out. If our S only consists of finitely many
elements we call it a finite semigroup.

It may now be apparent that we can start off with a simple algebraic structure and add more and
more properties to it until we get a new one which underlies new rules and has more advanced
characteristics.

2.4 Definition. Commutative algebraic structures:

Let (S, ◦) be an algebraic structure. We call S commutative or abelian if for all x, y ∈ S we have

x ◦ y = y ◦ x .

Example. (3) (N,+) is an abelian semigroup. Let (N,+) be the pair of positive integers and the
corresponding addition. We have already proven (N,+) to be a magma. To show that (N,+) also
forms a semigroup we just need to show, that for all m,n, p ∈ N we have m+ (n+ p) = (m+n) + p.

Proof. Let m,n ∈ N be fixed but arbitrary natural numbers and let

P(p): m+ (n+ p) = (m+ n) + p for all p ∈ N

Consider P(0) as the base step. By (i) we can confirm that

m+ (n+ 0)
(i)
= m+ n

(i)
= (m+ n) + 0

indeed holds. Now we want to suppose, that for some k ∈ N P(k) is true. We need to show that
P(k) ensures P(succ(k)) is true. It follows by our addition’s property (ii), that for P(succ(k)) we
have:

m+ (n+ succ(k))
(ii)
= m+ succ(n+ k)

(ii)
= succ(m+ (n+ k))

and

(m+ n) + succ(k)
(ii)
= succ((m+ n) + k) .

This immediately implies, that whenever P(k) is true

m+ (n+ succ(k)) = succ(m+ (n+ k))
P(k)
= succ((m+ n) + k)= (m+ n) + succ(k)

8



and thus P(succ(k)) is true. By the principle of mathematical induction P(p) is true for all p ∈ N
and we can conclude that the operation is associative and that (N,+) is indeed a semigroup. We
denote the associative law as A.

Next we need to confirm that 0 ∈ N commutes with every element of the natural numbers. As
always, we proceed by using the principle of mathematical induction. Let for all n ∈ N

P(n): n+ 0 = n = 0 + n

be our proposition. Obviously, we can confirm that our base step

P(0) : 0 + 0
(i)
= 0

(i)
= 0 + 0

is indeed a true statement. Next we would like to suppose, that for some arbitrary natural number
k ∈ N P(k) is true.

⇒ 0 + succ(k)
(ii)
= succ(0 + k)

P(k)
= succ(k + 0)

(i)
= succ(k)

(i)
= succ(k) + 0

By induction we have shown that 0 ∈ N commutes with all n ∈ N. This step was necessary for
generalizing the commutation argument to all n,m ∈ N.

Let us now fix some n ∈ N and define for all m ∈ N

P(m): n+m = m+ n .

The base step P(0) follows directly from the previous observation. Now we want to suppose that
P(k) is true and we want to see if this induction hypothesis ensures P(succ(k)) being true.

⇒ succ(k) + n
P1= (k + succ(0)) + n

A
= k + (succ(0) + n)

P(k)
= k + (n + succ(0))

P1= k + succ(n)
(ii)
=

succ(k + n)
P(k)
= succ(n+ k)

(ii)
= n+ succ(k)

Hence we have confirmed the commutative law C and the proof is complete. �

Example. (4) An example of a pair not being a semigroup is (No, +), where No = {1, 3, 5, ...} ⊂ N
is the set of all odd positive integers and + the natural number’s addition. Note that an odd
number n ∈ No has the property, that it can be written as n = k · 2 + 1, where k ∈ N and
2 = succ(1).

Proof. Before we can begin with the main proof, let us establish the closure of N under
multiplication and the so called distributive law D.

Let n ∈ N be a fixed but arbitrary natural number and let

P(m): n ·m ∈ N for all m ∈ N

The base step P(0) being true follows immediately from (iii). Now we want to suppose that for
some k ∈ N P(k) is true. Let us confirm, that our induction hypothesis ensures, that P(succ(k)) is
true.

⇒ n · succ(k)
(iv)
= n · k + n

By P(k) we can confirm, that n · k ∈ N and we also know that the natural numbers are closed
under addition, implying that n · k + n ∈ N. Hence the closure under multiplication has been
established. �

9



Next we would like to show, that (n+m) · p = n · p+m · p for all n,m, p ∈ N. Let n,m ∈ N be
fixed but arbitrary and let

P(p): (n+m) · p = n · p+m · p for all p ∈ N .

Our base step P(0) is clearly true, since (n+m) · 0 (iii)
= 0

(i)
= 0 + 0

(iii)
= n · 0 +m · 0. We now want to

consider P(k) to be true. Then it follows that P(succ(k)):

(n+m) · succ(k)
(iv)
= (n+m) · k + (n+m)

P(k)
= n · k +m · k + (n+m)

A
= n · k + (m · k + n) +m

C
=

n · k + (n+m · k) +m
A
= (n · k + n) + (m · k +m)

(iv)
= n · succ(k) +m · succ(k)

is true by the induction hypothesis and other already established laws. Thus the distributive law
D has been proven to be true.

�

Let n,m ∈ No, and thus n = k · 2 + 1 and m = l · 2 + 1, where k, l ∈ N :

n+m = k · 2 + 1 + l · 2 + 1

C
= k · 2 + l · 2 + 1 + 1

A
= k · 2 + l · 2 + (1 + 1)

P3= k · 2 + l · 2 + (1 · 1 + 1)

(iv)
= k · 2 + l · 2 + 1 · succ(1)

= k · 2 + l · 2 + 1 · 2
D
= (k + l + 1) · 2

By our closure laws we know, that (k + l + 1) ∈ N and hence (k + l + 1) · 2 ∈ N. But this result is
not element of No since it takes the form of n+m = a · 2, a ∈ N , i.e. an even positive integer. Thus
(No, +) is not closed under the operation and fails to even be a magma. Thus it is no semigroup.

Note, that we have just shown that our claim holds for all arbitrary odd positive integers.
Generalization is always good, but sometimes there are ways to simplify such proofs further. We
would have also shown that the pair does not form a magma, if we would have come up with a
good counterexample. Let us now consider the element 1 ∈ No. Then:

1 + 1 = 1 + succ(0)
P1= succ(1) = 2

P3= 1 · 2

Which takes the form of an even positive integer by our previous observation. That also means that
the closure already fails for two distinct examples and so it does for the general case in conclusion.

�

Example. (5) Let TX be the set of all functions α : X → X. Then (TX , ◦) is a semigroup, where ◦
represents function composition (β ◦ α)(x) = β(α(x)) for all x ∈ X and α, β ∈ TX .

Proof. Let us first verify the closure under the function composition. Let α and β be two
functions of TX , then:

10



(β ◦ α)(x) = β(α(x)) ∈ TX ,

since β : X → X and α : X → X implies, that β ◦ α : X → X. Now for the associativity. Let
α, β, γ ∈ TX , then:

[α ◦ (β ◦ γ)](x) = α((β ◦ γ)(x)) = α(β(γ(x)) = (α ◦ β)(γ(x)) = [(α ◦ β) ◦ γ](x)

We have successfully introduced the semigroup of transfomations.

�

Those were already a lot of examples, but in order for us to understand the theory of semigroups,
we have to understand semigroups in itself first and how to prove simple statements regarding
them. The next few sites will consist of the longest proof of the paper.

Example. (6) Let (N,?) be defined by ? : N× N→ N, where the binary operation is defined as

n ? m = max{n,m} =

{
n , n ≥ m
m , otherwise

Our goal is it to show, that this pair forms indeed a semigroup. Before we can actually show it, we
have to prove, that one element can be less or equal to another element. So let us show, that the
natural numbers are a totally ordered set. Let us at first recall a few little facts about binary
relations.

Definition. Relation: A binary relation R ⊆ S × S on a set S is called:

• Reflexive, if aRa holds for all a ∈ S

• Symmetric, if whenever aRb then bRa for all a, b ∈ S

• Transitive, if whenever aRb and bRc then aRc for all a, b, c ∈ S

Definition. Strict order relation on N :

For each n,m ∈ N we define < ⊆ N× N by:

n < m iff there exists some p ∈ N\{0}, such that p+ n = m

Analogously, we define > ⊆ N× N by:

n > m⇔ m < n

Definition. Order relation:

Let S be a non-empty set. For each a, b ∈ S we define ≤ ⊆ S × S by

a ≤ b if either a < b or a = b .

11



Also, for each a, b ∈ S we define ≥ ⊆ S × S by

a ≥ b⇔ b ≤ a .

We can show that N is totally ordered if our order relation holds for all positive integers and if
a ≤ b or b ≤ a for all a, b ∈ N (connex property). In the next steps we are going to establish a few
facts about the strict order relation by which our order relation is basically defined and the
so-called trichotomy law.

Proposition. P4: For all n ∈ N and m ∈ N\{0} we have m+ n 6= n.

Proof. Let m ∈ N\{0} be fixed but arbitrary. Let us consider the proposition

P(n) : m+ n 6= n for all n ∈ N

The base step P(0): m+ 0
(i)
= m 6= 0 is true, since m ∈ N\{0}. Now let us assume that P(k) is

true for some k ∈ N and see if this ensures P(succ(k)) to be true. Suppose P(succ(k)) is false, then

by P4 we know, that m+ succ(k)
(iii)
= succ(m+ k) = succ(k) implies m+ k = k. This equation can

only hold if m = 0 but this in itself is a contradiction, since m ∈ N\{0} and so the implication
could not hold. Hence, m+ k 6= k which was our induction hypothesis. Thus P(succ(k)) is true
and the proposition has been established.

�

Lemma. L1: < ⊆ N× N is transitive, but neither reflexive nor symmetric. If this holds, we call <
an order.

Proof. Let m,n, p ∈ N and without loss of generality let us set m < n and n < p. By the
definition of our order relation there exists some k, r ∈ N\{0}, such that k +m = n and r + n = p.

Then we have r + n = r + (k +m)
A
= (r + k) +m = p. This deals with the transitivity, since there

exists some (r + k) = s ∈ N such that s+m = p. And this is equivalent to saying, that m < p.

Now let us consider n ∈ N. Now n < n is false, since if it were true, there would exist some
k ∈ N\{0}, such that k + n = n. But this is not possible due to our above proposition. We can
now conclude that our order relation is not reflexive.

Lastly, let n,m ∈ N and let us assume that n < m and m < n. But we have shown that our
relation is transitive, which immediately implies, that n < n, which is false due to < ⊆ N× N not
being reflexive. Thus, our relation is not symmetric and we have proven N to be an ordered set.

�

Just like announced, we are now going to prove the trichotomy law. It is quite a powerful
statement which deals with the connex property and our order relation at the same time. It
basically gives us the certainty that only one of the three relations between two positive integers
can be true at the same time. Note that this proof has been inspired by Schaum’s Outlines of
Abstract Algebra [Second edition, page 43] and that the basic outline is identical.
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Theorem. The trichotomy law:

For any n,m ∈ N one and only one of the following is true:

• n = m • n < m • n > m

Proof. Let n ∈ N be any arbitrary positive integer and let N1 = {m} ⊂ N,
N2 = {p | p ∈ N, p < m} ⊂ N and N3 = {p | p ∈ N, p > m} ⊂ N. In the following process, we are
going to prove that {N1, N2, N3} is a partition relative to {=, <, >}.

Let us introduce some m ∈ N. At first, let us suppose that m = 0, hence N1 = {0}, N2 = {} (since
no element of the natural numbers can be less than 0 by P3) and N3 = {p | p ∈ N, p > 0}.
Obviously we now have N1 ∪N2 ∪N3 = N. Next we want to set m 6= 0. Since 0 ∈ N2, it follows
that 0 ∈ N1 ∪N2 ∪N3. Now we want to choose any n 6= 0 ∈ N1 ∪N2 ∪N3.

Case I: n ∈ N1 ⇒ n = m and so is succ(n) ∈ N3

Case II : n ∈ N2, such that n+ k = m for some k ∈ N. If k = 0, then it follows that n = m ∈ N1.
On the other hand, if k 6= 0 such that k = succ(0) + q for some q ∈ N, then:

n+ succ(0) + q
P1= succ(n) + q = m, and so succ(n) ∈ N3.

Case III : n ∈ N3 ⇒ succ(n) > n > m⇒ succ(n) ∈ N3

Thus, for all n ∈ N we have n ∈ N1 ∪N2 ∪N3 implying that succ(n) ∈ N1 ∪N2 ∪N3. Since
0 ∈ N1 ∪N2 ∪N3 we can conclude, that N = N1 ∪N2 ∪N3.

Now n ∈ N2, since m ≮ m, hence N1 ∩N2 = {}. Analogous, m ≯ m and so N1 ∩N3 = {}. Lastly,
let us suppose that there is some k ∈ N satisfying p ∈ N2 ∩N3. It then follows, that p < m and
p > m, which is equivalent to saying, that p < m and m < p. But this in itself is a contradiction
because the transitivity of < now ensures p < p which is clearly false. Thus, N2 ∩N3 = {}.

This very important law deals with the connex property which is key to having a totally ordered
set.

�

Now that we have shown that N is totally ordered, we can finally start to show, that (N, ?) is a
semigroup. First we need to show, that the pair is closed under its binary operation, meaning that
for all n,m ∈ N : n ? m ∈ N .

Proof. We have to consider two main cases.

Case 1: n ≥ m ⇒ n ? m = max{n,m} = n ∈ N

Case 2: m ≥ n ⇒ n ? m = max{n,m} = m ∈ N

Thus, the closure has been shown. The next part is going to consist of a lot of casework. We now
have to show, that for all n,m, k ∈ N we have n ? (m ? k) = (n ? m) ? k.

Case 1: n ≥ m ≥ k, then:

n ? (m?k) = max{n,max{m, k}} = max{n,m}= n = max{n, k}=max{max{n,m}, k}= (n ?m) ? k
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Case 2: n ≥ k ≥ m, and so:

n ? (m ? k) = max{n,max{m, k}} = max{n, k} = max{max{n,m}, k} = (n ? m) ? k

Case 3: If m ≥ n ≥ k we have:

n? (m?k) = max{n,max{m, k}}= max{n,m} = m = max{m, k}=max{max{n,m}, k}= (n?m)?k

Case 4: For m ≥ k ≥ n we get:

n? (m?k) = max{n,max{m, k}}= max{n,m} = m = max{m, k}=max{max{n,m}, k}= (n?m)?k

Case 5: k ≥ n ≥ m:

n ? (m ? k) = max{n,max{m, k}} = max{n, k} = max{max{n,m}, k} = (n ? m) ? k

Case 6: And finally, when k ≥ m ≥ n:

n ? (m ? k) = max{n,max{m, k}}= max{n, k} = k = max{m, k}=max{max{n,m}, k}= (n ? m) ? k

Thus, we have shown that (N, ?) is associative and closed under its operation, making it a
semigroup.

�

This was a lot of work! Now that we have understood how to prove a pair to be a semigroup, we
can continue by adding new properties to algebraic structures.

2.5 Definition. Monoids and groups:

Let (S, ◦) be a semigroup. We call an element e ∈ S a left identity, if for all x ∈ S:

e ◦ x = x

Analogously, we call e ∈ S a right identity, if for all x ∈ S :

x ◦ e = x

If both properties hold for one element e ∈ S, we usually call it an identity of S. If said semigroup
(S, ◦) has such an identity, we call it a monoid.

Lemma. L2: A semigroup S can have at most one identity. Such an identity is in fact unique,
meaning if S has a left identity e ∈ S and a right identity ẽ ∈ S, then e = ẽ.

Proof. Since e is a left identity and ẽ a right one: e = e ◦ ẽ = ẽ

�

We usually denote the identity of a monoid S as 1S or just 1. But depending on the monoid, we
are going to make use of the identity’s established notation.
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Example. (7) Let us consider the pair (N,+). The natural number’s identity with respect to the
binary operation + is 0 ∈ N.

Proof. 0 + n
C
= n+ 0

(i)
= n , for all n ∈ N

Hence, the pair (N,+) forms a monoid.

�

Example. (8) Let us consider the pair (N, ·). The natural number’s identity with respect to the
binary operation · is 1 ∈ N. The proof of this fact follows immediately from P3.

If a given semigroup S does not have an identity element we can make a monoid S1 out of it, by
adjoining an identity to S:

S1 =

{
S , if S is a monoid

S ∪ {1} , if S is not a monoid

A monoid (G, ◦) is called a group, if for every element x ∈ G there exists a x−1 ∈ G, such that

x ◦ x−1 = 1 = x−1 ◦ x

2.6 Definition. Zeros and idempotents

An element x ∈ S is called a left zero, if for all y ∈ S we have

x ◦ y = x.

Analogously, an element x ∈ S having the property, that for all y ∈ S we have

y ◦ x = x

is called a right zero of S. If an element x ∈ S has both properties, then it is called a zero.

Lemma. L3: A semigroup (S, ◦) can have at most one zero, meaning that it is unique.

Proof. Let 0, 0̃ ∈ S be two zeros of S. Then

0 = 0 ◦ 0̃ = 0̃

since 0 and 0̃ are both left and right zeros.

�

An element e ∈ S is called an idempotent, if e ◦ e = e2 = e holds, where e2 is the product of e
with itself two times. We refer to the set of all idempotents of S by Es = {e ∈ S | e2 = e}.
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Example. (9) The pair (N, ·) has 0 ∈ N and 1 ∈ N as idempotents.

Proof. 0 · 0 (iii)
= 0 and 1 · 1 = 1 · succ(0)

(iv)
= 1 · 0 + 1

(iii)
= 0 + 1

C
= 1 + 0

(i)
= 1

�

Example. (10) Let S be a set, and let • : S × S → S be defined as

a • b = a for all a, b ∈ S .

(S, •) forms a semigroup, where each a ∈ S is a left zero and a right identity at the same time.
Also, all elements are idempotents, meaning that S = ES .

Proof. At first let us confirm that (S, •) is indeed a semigroup. Let a, b, c ∈ S, then:

a • (b • c) = a • b = (a • b) • c

Moreover, a • b = a ∈ S by definition. The left zero and right identity property is trivial. Let
e ∈ S, then:

e • e = e for all e ∈ S .

Thus, every element is an idempotent, implying that S = ES

�

Lemma. L4: If (G, ◦) is a group, then EG = {e}, where e ∈ G is the groups identity.

Proof. Let g ∈ G be any idempotent of G. Since G is a group there exists a g−1 ∈ G for all
g ∈ G, such that g ◦ g−1 = g−1 ◦ g = e.

⇒ g ◦ g = g

⇔ g ◦ g ◦ g−1 = g ◦ g−1

⇔ g ◦ e = g = e

Since g ∈ G was by definition any idempotent, we now have confirmed that g = e, meaning that
ES = {e}.

�

Example. (11) Let (S, ·) be a semigroup. For any two subsets A,B ⊆ S we define their product by

A ·B = {a · b | a ∈ A, b ∈ B}

This newly obtained operation is associative, since we use the semigroups operation (which ensures
associativity) on our new set’s elements. Hence, the subsets of S form the so-called global
semigroup of S. We denote it by 2S . For some subset A ⊆ S, we let A2 = A ·A as usual.
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2.7 Definition. Cancellation semigroups

A semigroup S is called left cancellative, if for all x, y, z ∈ S we have:

z ◦ x = z ◦ y ⇒ x = y

By the same arguments, we call S right cancellative, if

x ◦ z = y ◦ z ⇒ x = y

If a semigroup (S, ◦) satisfies both properties, we call it cancellative.

Example. (12) (N,+) is a cancellative monoid.

Proof. We have already proven (N,+) to be a monoid. Let n,m ∈ N be fixed but arbitrary
positive integers. Let us consider the proposition

P(p) : n+ p = m+ p⇒ n = m , for all p ∈ N.

The base step P(0) is true, since

n
(i)
= n+ 0 = m+ 0

(i)
= m⇔ n = m.

Let us assume P(k) to be true for all k ∈ N. Then it follows for P(succ(k)) :

n+ succ(k)
(ii)
= succ(n+ k)

P(k)
= succ(m+ k)

(ii)
= m+ succ(k)

By P4 and P(k) we can conclude that:

succ(n+ k) = succ(m+ k)⇒ n+ k = m+ k
P(k)
=⇒ n = m

By the principle of mathematical induction we have confirmed (N,+) to be right cancellative. Now
all that is left to do, is to show that the pair is also left cancellative. This fact follows immediately
from (N,+) being abelian. So for all n,m, p ∈ N we have:

p+ n = p+m
C⇐⇒ n+ p = m+ p⇒ n = m

�

3 Subsemigroups and Direct Products

3.1 Definition. Subsemigroups:

Let (S, ◦) be a semigroup and SS 6= {} a non-empty subset of S. We say that (SS , ◦) is a
subsemigroup of S, being denoted by SS ≤ S, if SS is closed under the operation of S:

for all x, y ∈ SS : x ◦ y ∈ SS ,

that is,

SS ≤ S ⇔ S2
S⊆ SS .
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This definition is analogous to the one on submagmas. A subsemigroup makes use of the mother
semigroup’s operation. This also means, that the associative property is induced on SS which also
implies, that SS forms a semigroup in its own right.

Example. (13) Consider (Ne,+), where Ne denotes the set of even positive integers
Ne = {n = k · 2, k ∈ N} ⊂ N. This pair forms a subsemigroup of (N,+). On the other hand, (Ne, ·)
does not, because the multiplication is not the operation of (N,+).

Proof. All we need to prove is (Ne,+) being a semigroup. Since all elements of this pair can be
constructed in terms of positive integers, the associativity gets induced by the mother semigroup.
Now let n,m ∈ Ne,where n = k · 2 and m = p · 2. Then:

n+m = k · 2 + p · 2
D
= (k + p) · 2

Since (k + p) = s ∈ N we also know that (k + p) · 2 is of the form s · 2 ∈ Ne. Hence, the pair is
closed under addition and we can conclude that (Ne,+) ≤ (N,+)

�

Lemma. L5: Let Ai ≤ S be subsemigroups of S for all i ∈ I. If their intersection is non-empty,
then ⋂

i∈I
Ai ≤ S.

Proof. Suppose that the intersection is non-empty. If x, y ∈ A =
⋂

i∈IAi, then for each i ∈ I we
have x, y ∈ A. Then x ◦ y ∈ A, just as required.

�

For some non-empty subset X ⊆ S we denote

[X]S =
⋂
{A | X ⊆ A, A ≤ S} .

Then, by L5 [X]S is a subsemigroup of S, which we usually call the subsemigroup generated
by X. It is the smallest subsemigroup of S which contains X. Sometimes [X]S will be denoted
simply as [X], if S is clear from the context.

When X = {x}, called a singleton, then we write [x]S instead of [{x}]S . In general, we rather
write [x1, x2, ...]S instead of [{x1, x2, ...}]S no matter if X = {x1, x2, ...} is finite or not.

Theorem. Let X 6= {}, X ⊆ S for a semigroup (S, ◦), then

[X]S =

∞⋃
n=1

Xn = {x1 ◦ x2 ◦ ... ◦ xn | n ≥ 1, xi ∈ X} .
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Proof. Let A =
∞⋃

n=1
Xn and a, b ∈ A. Then a and b are finite products of elements of X. This

also means, that a ◦ b is a finite product of elements of X and are thus in A. The associative
property gets induced by S on A, making A ≤ S. Also, Xn ⊆ [X]S for all n ≥ 1, since [X]S ≤ S,
and hence the claim follows. We denote this new result as T1 because we are going to need it at a
later time.

�

Let M be a monoid. We say that a X ⊆M generates M as a monoid, if [X]M = M or
[X]M = M\{1M}. Hence in a monoid the identity element is always taken into consideration,
meaning a generator set does not need to produce it.

3.2 Definition. Direct products:

Let (S, ◦) and (T, •) be two algebraic structures. The direct product S × T is defined as follows:

for all xi ∈ S and yi ∈ T we have: (x1, y1) · (x2, y2) = (x1 ◦ x2, y1 • y2) .

We define S1 × S2 × ...× Sn as the finite direct product of the semigroups Si and one can observe
that the direct product on semigroups in itself forms a semigroup.

Proof. Let (S, ◦) and (T, •) be semigroups with s1, s2 ∈ S and t1, t2 ∈ T . For the closure we
obtain:

S × T = (s1, t1) · (s2, t2) = (s1 ◦ s2, t1 • t2) ∈ {(s, t) | s ∈ S, t ∈ T} .

Since S and T are semigroups, we know that the product of their elements are elements of the
semigroups respectively. Thus we have verified the closure. Showing the associativity is quite some
work. Let us define at first, what it means for us to take the direct product of three semigroups.
Let S and T be like above and (P, ?) be a third semigroup, then

(S × T )× P = {((s, t), p) | s ∈ S, t ∈ T and p ∈ P} .

With this out of the way we can get started. Let s1, s2, s3 ∈ S, t1, t2, t3 ∈ T and p1, p2, p3 ∈ P ,
then:

(S × T )× P = [((s1, t1), p1) · ((s2, t2), p2)] · ((s3, t3), p3)

= (((s1, t1) · (s2, t2)), p1 ? p2) · ((s3, t3), p3)

= ((s1 ◦ s2, t1 • t2), p1 ? p2) · ((s3, t3), p3)

= (((s1 ◦ s2, t1 • t2) · (s3, t3)), (p1 ? p2) ? p3)

= (((s1 ◦ s2) ◦ s3, (t1 • t2) • t3), (p1 ? p2) ? p3)

(∗)
= ((s1 ◦ (s2 ◦ s3), t1 • (t2 • t3)), p1 ? (p2 ? p3))

= (((s1, t1) · (s2 ◦ s3, t2 • t3)), p1 ? (p2 ? p3))

= ((s1, t1), p1) · ((s2 ◦ s3, t2 • t3), p2 ? p3)

= ((s1, t1), p1) · (((s2, t2) · (s3, t3)), p2 ? p3)

= ((s1, t1), p1) · [((s2, t2), p2) · ((s3, t3), p3)] = S × (T × P ) ,
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where (∗) follows from the fact, that S, T and P are semigroups and their operations associative.
Thus we have shown, that the direct product of semigroups indeed forms a semigroup itself.

�

Example. (14) Let (N,+) and (N, ·) be two pairs. Then the direct product of (N,+)× (N, ·) for all
ni,mi ∈ N is:

(n1,m1) · (n2,m2) = (n1 + n2,m1 ·m2) .

The operations are valid, since N is closed under multiplication and addition.

The direct product is one way to easily combine two semigroup operations of S and T . This new
semigroup S × T gets induced by the properties of both S and T .

We call the mappings π1 : S × T → S and π2 : S × T → T such that π1(x, y) = x and π2(x, y) = y
projections of S × T . In general we can also observe, that the direct product is not an abelian
action, meaning S × T 6= T × S.

4 Homomorphisms and Transformations

This new chapter is going to deal with one of the tools which will allow us to state and prove the
paper’s main theorem in question. Homomorphisms, or just morphisms, are quite an important
concept in linear and abstract algebra and many other fields of mathematics.

4.1 Definition. Homomorphism:

Let (S, ◦) and (T, ?) be two algebraic structures with corresponding binary operations. A
mapping ϕ : S → T is called a homomorphism, if for all x, y ∈ S we have

ϕ(x ◦ y) = ϕ(x) ? ϕ(y) .

Hence, a homomorphism respects the product of one algebraic structure while transferring
elements to some other structure. A homomorphism can also be used to identify elements,
meaning ϕ(x) = ϕ(y).

Example. (15) Let us define some ϕ : S → T , with S = (N,+) and T = (N2x2,+) where the latter
pair represents all the two by two matrices with positive integer entries under the regular matrix
addition.

Now consider

ϕ(n) =

(
n 0
0 n

)
for all n ∈ N.

This mapping is indeed a homomorphism, since we have for all n,m ∈ S :
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ϕ(n+m) =

(
n+m 0

0 n+m

)
=

(
n 0
0 n

)
+

(
m 0
0 m

)
= ϕ(n) + ϕ(m).

This ϕ indeed satisfies the homomorphism property.

�

Example. (16) Let ϕ : S → T , where S = (N, ·) and T = (N,+). Now consider for all n ∈ N
ϕ(n) = n. This is an example of a mapping not being a homomorphism. To prove this statement,
we just need to find one counterexample. Let n = 17 for example, then

17 = ϕ(17)
P3= ϕ(17 · 1) 6= ϕ(17) + ϕ(1) = 17 + 1

P1= succ(17),

which can clearly not be the case, since by P4 and C we know that m+ n = n+m 6= n for all
m ∈ N\{0}.

�

Lemma. L7: Let (S, ◦) and (T, ?) be given pairs and ϕ : S → T a homomorphism. If X ⊆ S, then
ϕ([X]S) = [ϕ(X)]T .

Proof. If x ∈ [X]S , then by T1 there exists some xi ∈ X such that x = x1 ◦ ... ◦ xn. Since ϕ is a
homomorphism,

ϕ(x) = ϕ(x1 ◦ ... ◦ xn) = ϕ(x1) ? ... ? ϕ(xn)

and thus ϕ([X]S) ⊆ [ϕ(X)]T . Considering the other direction, if y ∈ [ϕ(X)]T , then once again by
T1 we have y = ϕ(x1) ? ... ? ϕ(xn) for some ϕ(xi) ∈ ϕ(X), where xi ∈ X. Just like before, since ϕ
is a homomorphism, we have y = ϕ(x1 ◦ ... ◦ xn) for x1 ◦ ... ◦ xn ∈ [X]S .

�

Lemma. L8: Let (S, ·), (T, •) and (P, ?) be given pairs. If ϕ1 : S → T and ϕ2 : T → P are
homomorphisms, then so is ϕ2 ◦ ϕ1 : S → P , where ◦ denotes function composition.

Proof. We have for all x, y ∈ S:

(ϕ2◦ϕ1)(x·y) = ϕ2(ϕ1(x·y)) = ϕ2(ϕ1(x)•ϕ1(y)) = ϕ2(ϕ1(x))?ϕ2(ϕ1(y)) = (ϕ2◦ϕ1)(x)?(ϕ2◦ϕ1)(y)

since ϕ1 and ϕ2 are homomorphisms by definition.

�

For a mapping ϕ : S → T we denote the restriction of ϕ to the subset X ⊆ S by ϕ�X. We define
ϕ�X : X → T for all x ∈ X by

(ϕ�X)(x) = ϕ(x).

This result states, that two homomorphisms are the same if they map the generators in the same
way.
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Theorem. Let (S, ·) and (T, •) be two pairs, X ⊆ S and ϕ1, ϕ2 : S → T be two homomorphisms,
then

ϕ1�X = ϕ2�X ⇔ ϕ1�[X]S = ϕ2�[X]S

Proof. The implication from right to left is obvious. Since our mappings are equal on [X]S ,
they are also equal on X because it is just a subset of [X]S .

For the other direction of the equivalence consider some r = x1 · ... · xn ∈ [X]S . Then by T1 and
since ϕ1 and ϕ2 are homomorphisms, we have for xi ∈ X:

ϕ1(r) = ϕ1(x1 · ... · xn) = ϕ1(x1) • ... • ϕ1(xn) = ϕ2(x1) • ... • ϕ2(xn) = ϕ2(x1 · ... · xn) = ϕ2(r)

�

4.2 Definitions. Embeddings and isomorphisms:

A homomorphism ϕ : S → T is called

- an embedding or monomorphism, denoted ϕ : S ↪→ T , if ϕ(x) = ϕ(y) implies x = y. This
special property is called injectivity.

- an epimorphism, denoted ϕ : S � T , if for all y ∈ T there exists some x ∈ S with ϕ(x) = y.
This is called surjectivity.

- an isomorphism, denoted ϕ : S � T , if it is an embedding and an epimorphism, meaning it is
injective and surjective. If this is the case, we call the mapping ϕ a bijection.

- an endomorphism, if S = T .

- an automorphism, if it is both an isomorphism and an endomorphism.

Lemma. L9: Let us denote the identity mapping of some pair (S, ·) by idS : S → S, where
ids(x) = x for all x ∈ S. This mapping forms an automorphism.

Proof. Obviously our domain is the same as our codomain, namely S. So we nearly have idS
being an endomorphism if we can prove it to be a homomorphism. Let us now confirm idS being
one:

idS(x · y) = x · y = idS(x) · idS(y) .

This statement has been proven to be correct. Now we need to show, that we are dealing with a
bijection. Let us confirm the injectivity first:

idS(x) = idS(y) ⇔ x = y .

On the other hand, for the surjectivity we have:

idS(x)
(?)
= idS(y) = y ,

where (?) follows directly from idS being injective. Thus our lemma has been established.
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�

Lemma. L10: Let (S, ·) be a pair. For all ϕ : S → S we have ϕ ◦ idS = ϕ = idS ◦ ϕ under function
composition.

Proof. (ϕ ◦ idS)(x) = ϕ(idS(x)) = ϕ(x) = idS(ϕ(x)) = (idS ◦ ϕ)(x)

�

Proposition. P5: Let f : S → T and g : T → P be two bijections. Then their composition
g ◦ f : S → P is also a bijection.

Proof. For the injectivity we have:

(g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y)

⇔ f(x) = f(y)

⇔ x = y,

where all the equivalences follow from the fact, that f and g are bijections and thus injections. For
the surjection property we need to take a closer look at f and g which are also surjections in itself:

for all p ∈ P there exists some t ∈ T with g(t) = p

and

for all t ∈ T there exists some s ∈ S with f(s) = t

Then,

(g ◦ f)(s) = g(f(s)) = g(t) = p ,

meaning there exists some s ∈ S for every p ∈ P with (g ◦ f)(s) = p which is the definition of the
composition being surjective.

Hence the composition is injective and surjective, making it a bijection.

�

Proposition. P6: ϕ : S → T is bijective iff ϕ has an inverse ϕ−1 : T → S.

Proof. Let ϕ be bijective and let us suppose there exists some ϕ−1. Since ϕ is bijective, it is
also surjective, meaning there exists some s ∈ S for all t ∈ T with ϕ(s) = t. Now let ϕ−1(t) = s.
We know that our ϕ is injective and thus s is unique, making ϕ−1 well defined.

The property of an inverse is that if we compose it with the original function we are going to be
left with the identity mapping. Let us confirm this statement from both directions of the
composition. Let s ∈ S and ϕ(s) = t, then we also have ϕ−1(t) = s. Then:

(ϕ−1 ◦ ϕ)(s) = ϕ−1(ϕ(s)) = ϕ−1(t) = s = idS(s)
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and

(ϕ ◦ ϕ−1)(t) = ϕ(ϕ−1(t)) = ϕ(s) = t = idT (t) .

This finishes the first implication of the equivalence. Let us now have an inverse ϕ−1 : T → S of ϕ.
We have to show, that ϕ : S → T is bijective. Let t ∈ T and ϕ−1(t) = s, then

ϕ(s) = ϕ(ϕ−1(t)) = (ϕ ◦ ϕ−1)(t) = idT (t) = t .

This finishes the surjectivity, since we have found some s ∈ S for all t ∈ T with ϕ(s) = t. Lastly we
have to take care of the injectivity. Let s1, s2 ∈ S, such that ϕ(s1) = ϕ(s2). Now let ϕ(s1) = t.
Since we have an inverse function, we also have ϕ−1(t) = s1. Thus we obtain:

s1 = idS(s1) = (ϕ−1 ◦ ϕ)(s1) = ϕ−1(ϕ(s1)) = ϕ−1(ϕ(s2)) = (ϕ−1 ◦ ϕ)(s2) = idS(s2) = s2

Thus we have shown, if ϕ(s1) = ϕ(s2), then s1 = s2 which is the definition of injectivity. By this
new proposition, we can also immediately derive a new statement for the inverse function itself.
Consider ϕ, which is nothing but the inverse function’s inverse function, meaning ϕ = (ϕ−1)−1. By
our equivalence we know, that since an inverse function now exists to our inverse function, it is
equivalent to saying that our inverse function ϕ−1 is bijective.

�

Lemma. L11: Let (S, ·) and (T, •) be two pairs. If ϕ : S → T is an isomorphism, then the inverse
map ϕ−1 : T → S is also an isomorphism.

Proof. At first we have to confirm that an inverse mapping exists. By P6 this is indeed the
case, since ϕ is bijective. Furthermore, we have ϕ ◦ ϕ−1 = idS , where ids : S → S is the identity
function, with idS(x) = x. Those facts also follow immediately from P6. And hence, because ϕ is
a homomorphism we have for all x, y ∈ S:

ϕ(ϕ−1(x) · ϕ−1(y)) = ϕ(ϕ−1(x)) • ϕ(ϕ−1(y)) = x • y

and so ϕ−1(x) · ϕ−1(y) = ϕ−1(x • y).

�

An algebraic structure S is embeddable in another structure T , if there exists some ϕ : S ↪→ T .
A structure S is isomorphic to T , being denoted by S ∼= T , if there exists an isomorphism
ϕ : S � T . Two isomorphic structures share their algebraic properties.

The endomorphisms of some S are closed under composition, that is, if ϕ1, ϕ2 : S → S are
endomorphisms, then so is ϕ2 ◦ ϕ1. The same statement holds true for automorphisms.

Theorem. The endomorphisms of a semigroup S form a monoid.

Proof. At first let us ensure the closure. Let (End(S), ◦) be our pair, where we have the set of
endomorphisms of (S, ·) under function composition. Now let f, g ∈ End(S) = {ϕ : S → S}. For
the composition of f and g to be closed under composition, we just have to show, that g ◦ f is once
again a homomorphism. Since f and g are homomorphisms themselves, it then follows, that
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(g ◦ f)(x · y) = g(f(x · y)) = g(f(x) · f(y)) = g(f(x)) · g(f(y)) = (g ◦ f)(x) · (g ◦ f)(y)

for all x, y ∈ S. This result is nothing new though, since we have verified its correctness already in
L8. This deals with the closure. The associativity follows immediately for all f, g, h ∈ End(S):

[f ◦ (g ◦ h)](x) = f((g ◦ h)(x)) = f(g(h(x))) = (f ◦ g)(h(x)) = [(f ◦ g) ◦ h](x) .

Last but not least we have to make sure that there is some idS ∈ End(S) such that
f ◦ idS = f = idS ◦ f for all f ∈ End(S). This is indeed the case, and by L9 and L10 the claim
follows.

�

Theorem. The automorphisms of a semigroup S form a group.

Proof. Let (Aut(S), ◦) be a pair, and let f, g ∈ Aut(S) = {ϕ : S → S | ϕ is a bijection}. Since
an automorphism is nothing but an endomorphism and a bijection, we nearly get (Aut(S), ◦)
being a monoid from the previous theorem. All that is left to show, is that the composition of f
and g is also a bijection. This follows immediately from P5.

Thus, all that we now need, is that for all f ∈ Aut(S) there exists some f−1 ∈ Aut(S) such that
f ◦ f−1 = idS = f−1 ◦ f . Since f is a bijection, there indeed exists a bijective inverse function f−1

of f by P6. The fact that f−1 is a homomorphism follows immediately from L11. Thus Aut(S) is
indeed a group under function composition.

�

4.3 Definition. The full transformation semigroup:

Let X be a set, and let TX be the set introduced back in (5). This set forms the so-called full
transformation semigroup on X under function composition.

Example. (17) Let X = {1, 2}. Altogether we have 2 · 2 = 4 functions in TX . A mapping
ϕ : X → X, which is defined by ϕ(1) = 2 and ϕ(2) = 2 can be represent mainly in two ways:

ϕ =

(
1 2
2 2

)
or 1

ϕ→ 2

Now we let

ζ =

(
1 2
2 1

)
,

and S = [ϕ, ζ]S the semigroup of TX generated by ϕ and ζ. Then we have:

ϕ2 =

(
1 2
2 2

)
= ϕ ζ2 =

(
1 2
1 2

)
= idX ϕ ◦ ζ =

(
1 2
2 2

)
= ϕ

ζ ◦ ϕ =

(
1 2
1 1

)
ϕ ◦ ζ2 =

(
1 2
2 2

)
= ϕ

25



Those combinations and ζ itself actually cover all the elements of this semigroup. Thus,
S = {ϕ, ζ, ζ ◦ ϕ, ζ2} has all in all 4 elements. This also means, that S = TX since it covers all
possible combinations of TX .

5 Representations and the Cayley type Theorem

5.1 Definition. Representations:

We call a homomorphism ϕ : S → TX a representation of a structure S. The mapping ϕ is called
a faithful representation, if ϕ : S ↪→ TX , namely an embedding.

The following theorem is the climax of this paper. It states that every semigroup can be realized as
a transformation semigroup of some set. In other words we can say, that for each semigroup S
there exists some set X, such that S ∼= P ≤ TX for a semigroup P of transformations.

5.2 Theorem. The Cayley theorem for semigroups:

Every semigroup S has a faithful representation.

Proof. We can equivalently rephrase the theorem into:

Each semigroup is embedded in some TX .

This basically means that we need to show, that there exists some ϕ : S → TX , such that ϕ is
injective and a homomorphism.

Let (S, ·) be some semigroup. Now consider X = S1, meaning that we have adjoined an identity 1
to S in case S is not a monoid. Now let TX = {ρ | ρ : X → X} be the full transformation
semigroup.

For every s ∈ S we let ρs∈ TX be the left translation ρs(x) = s · x for all x ∈ X. Now consider
ϕ(s) = ρs.

Let us verify the injectivity of ϕ first. That means we have to show, that for all s, t ∈ S:

ϕ(s) = ϕ(t)⇒ s = t.

Then, ϕ(s) = ϕ(t) is equivalent to saying ρs = ρt, and so we have ρs(x) = ρt(x) for all x ∈ X. In
particular, by using our adjoined identity element 1 ∈ X, we have

ρs(1) = ρt(1)⇔ s · 1 = t · 1⇔ s = t.

Thus, ϕ : S → TX is injective. What is left to show, is ϕ being a homomorphism. Let s and t be
like above, then we have for all x ∈ X:

(ρs ◦ ρt)(x) = ρs(ρt(x)) = ρs(t · x) = s · (t · x)
(?)
= (s · t) · x = ρst(x),

where (?) is justified, by (S, ·) being a semigroup, and thus associative. With this new observation
we can finally conclude, that for all s, t ∈ S:

ϕ(s · t) = ρst = ρs ◦ ρt = ϕ(s) ◦ ϕ(t) .
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This clearly shows, that ϕ : S → TX is indeed a homomorphism and an injection making it an
embedding in the process. Thus ϕ : S ↪→ TX and the theorem has been proven.

�

Note that the identity element 1 is needed in the proof, in order for us to verify the injectivity of
ϕ. It is of need, because there exists some semigroup S, one without an identity element, which
hast two left identities x 6= y. If this is the case, then xz = yz for all z ∈ S.

Hence, in a loosely speaking manner, we can, by Cayley’s theorem for semigroups, conclude, that
the theory of semigroups can be taught as the theory of transformations.
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